蛋白质 - 蛋白质相互作用(PPI)网络由生物体的蛋白质之间的物理和/或功能相互作用组成。由于用于形成PPI网络的生物物理和高通量方法是昂贵的,耗时的,而且通常包含不准确性,因此最终的网络通常不完整。为了推断这些网络中缺少的相互作用,我们提出了基于连续的经典和量子随机步行的新型链接预测方法。在量子步行的情况下,我们检查了网络邻接和拉普拉斯矩阵的用法来控制步行动力学。我们根据相应的过渡概率定义得分函数,并在四个现实世界PPI数据集上执行测试。我们的结果表明,使用网络邻接矩阵的连续时间经典随机步行和量子步行可以成功预测缺失的蛋白质 - 蛋白质相互作用,并且性能与艺术的状态媲美。
translated by 谷歌翻译
Enhancing resilience in distributed networks in the face of malicious agents is an important problem for which many key theoretical results and applications require further development and characterization. This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's dynamic is influenced both by the values it receives from potentially malicious neighboring agents, and by its own self-serving target function. We develop a new algorithmic and analytical framework to achieve resilience for the class of problems where stochastic values of trust between agents exist and can be exploited. In this case we show that convergence to the true global optimal point can be recovered, both in mean and almost surely, even in the presence of malicious agents. Furthermore, we provide expected convergence rate guarantees in the form of upper bounds on the expected squared distance to the optimal value. Finally, we present numerical results that validate the analytical convergence guarantees we present in this paper even when the malicious agents compose the majority of agents in the network.
translated by 谷歌翻译
我们为对抗性多机器人群众跨任务中的决策制定开发了一个有弹性的二进制假设测试框架。该框架利用机器人之间的随机信任观察,以在集中式融合中心(FC)中得出可进行的弹性决策,即使I)在网络中存在恶意机器人,其数量可能大于合法机器人的数量,并且II )FC使用所有机器人的一次性噪声测量。我们得出两种算法来实现这一目标。第一个是两个阶段方法(2SA),该方法基于收到的信任观察估算机器人的合法性,并证明在最严重的恶意攻击中可最大程度地减少检测错误的可能性。在这里,恶意机器人的比例是已知但任意的。对于不明的恶意机器人,我们开发了对抗性的广义似然比测试(A-GLRT),该测试(A-GLRT)都使用报告的机器人测量和信任观察来估计机器人的可信赖性,其报告策略以及同时的正确假设。我们利用特殊的问题结构表明,尽管有几个未知的问题参数,但这种方法仍然可以计算处理。我们在硬件实验中部署了这两种算法,其中一组机器人会在模拟道路网络上进行交通状况的人群,但仍会受到SYBIL攻击的方式。我们从实际通信信号中提取每个机器人的信任观察结果,这些信号提供有关发件人独特性的统计信息。我们表明,即使恶意机器人在大多数情况下,FC也可以将检测误差的可能性降低到2SA和A-GLRT的30.5%和29%。
translated by 谷歌翻译
高维模型通常具有较大的内存足迹,必须在训练后进行量化,然后将其部署在资源受限的边缘设备上以进行推理任务。在这项工作中,我们开发了一个信息理论框架,用于量化从训练数据$(\ mathbf {x},\ mathbf {y})$的线性回归剂的问题,用于某些基本统计关系$ \ mathbf {y} = \ Mathbf {X} \ BoldSymbol {\ Theta} + \ Mathbf {V} $。博学的模型是对潜在参数$ \ boldsymbol {\ theta} \ in \ mathbb {r}^d $的估计值,仅使用$ bd $ bits来代表,其中$ b \ in(0,in 0,0,in(0) \ infty)$是预先指定的预算,$ d $是维度。在此设置下,我们为Minimax风险提供了信息理论的下限,并建议使用基于嵌入的算法进行匹配的上限,该算法紧密到恒定因素。上限和上限共同表征了达到与未量化设置相当的性能风险所需的最小阈值位预算。我们还提出了在计算上有效且最佳的随机hadamard嵌入到下限的轻度对数因子。我们的模型量化策略可以概括,我们通过将方法和上限扩展到两层relu神经网络以进行非线性回归来显示其功效。数值模拟表明,我们提出的方案的性能得到改善,以及其与下限的亲密关系。
translated by 谷歌翻译
在建模重复的法院游戏时,许多过去的尝试都认为需求是静止的。这与现实世界的情景不一致,其中市场需求可以通过产品的一生以无数的原因来实现。在本文中,我们模拟了重复的Cournot游戏,不符合非静止需求,使得公司/代理人面临非静止多武装强盗问题的单独实例。代理可以选择的武器/行动代表离散生产量;这里,排序动作空间。代理商是独立和自主的,无法观察到环境中的任何事情;他们只能在采取行动后看到自己的奖励,只能努力最大化这些奖励。我们提出了一种新颖的算法对加权探索(AWE)$ \ EPSILON $ -GREEDY'的自适应,这些探索基于众所周知的$ \ epsilon $ -greedy方法远程。该算法检测和量化由于不同的市场需求而导致的奖励的变化,并与需求变化程度的程度不同,从而使代理能够更好地识别新的最佳动作。为了有效探索,它还部署了一种用于称重利用有序动作空间的动作的机制。我们使用模拟来研究市场上各种均衡的出现。此外,我们在系统中的总代理数量和行动空间的大小之间研究了我们的方法的可扩展性。我们在我们的模型中考虑对称和不对称的公司。我们发现,使用我们提出的方法,代理商能够根据需求的变化迅速改变他们的行动方针,并且在许多模拟中也从事契合行为。
translated by 谷歌翻译
我们提出了新的WASSTEREIN图形集群,用于动态更改图形。Wassersein聚类惩罚了图之间的拓扑差异。Wassersein聚类显示出优于广泛使用的K-Means聚类。该方法应用于更准确地确定动态变化功能性脑网络的状态空间。
translated by 谷歌翻译
我们考虑一个集中检测问题,传感器对集中式融合中心进行嘈杂的测量和间歇性连接。传感器可以在预定的传感器集群内本地协作,并融合它们的噪声传感器数据,以达到每个簇中检测到的事件的公共常见估计。每个传感器集群的连接性是间歇性的,并且取决于传感器到融合中心的可用通信机会。在接收到所有连接的传感器集群的估计后,融合中心熔化所接收的估计,以对部署区域进行最终确定事件的发生。我们将该混合通信方案称为云集群架构。我们提出了一种用于优化每个群集的决策规则的方法,并分析由混合动力方案产生的预期检测性能。我们的方法是易行的并且解决了异构传感器和集群检测质量,其通信机会的异质性以及损失功能的非凸起引起的高计算复杂性。我们的分析表明,在用云的低传感器通信概率的情况下,聚类传感器为噪声提供弹性。对于较大的簇,即使使用我们的云集群架构,甚至可以获得低通信概率的检测性能的急剧提高。
translated by 谷歌翻译
当人类彼此合作时,他们经常通过观察他人来做出决定,并考虑到他们的行为可能在整个团队中的后果,而不是贪婪地做到最好的事情。我们希望我们的AI代理商通过捕获其合作伙伴的模型来有效地以类似的方式协作。在这项工作中,我们提出并分析了分散的多武装强盗(MAB)问题,耦合奖励作为更一般的多代理协作的抽象。我们展示了当申请分散的强盗团队时单代理最佳MAB算法的NA \“IVE扩展失败。相反,我们提出了一个合作伙伴感知策略,用于联合连续决策,这些策略扩展了众所周知的单王子的上置信度算法。我们分析表明,我们的拟议战略达到了对数遗憾,并提供了涉及人类AI和人机协作的广泛实验,以验证我们的理论发现。我们的结果表明,拟议的合作伙伴感知策略优于其他已知方法,以及我们的人类主题研究表明人类宁愿与实施我们合作伙伴感知战略的AI代理商合作。
translated by 谷歌翻译
我们在限制下研究了一阶优化算法,即使用每个维度的$ r $ bits预算进行量化下降方向,其中$ r \ in(0,\ infty)$。我们提出了具有收敛速率的计算有效优化算法,与信息理论性能匹配:(i):(i)具有访问精确梯度甲骨文的平稳且强烈的符合目标,以及(ii)一般凸面和非平滑目标访问嘈杂的亚级别甲骨文。这些算法的关键是一种多项式复杂源编码方案,它在量化它之前将矢量嵌入随机子空间中。这些嵌入使得具有很高的概率,它们沿着转换空间的任何规范方向的投影很小。结果,量化这些嵌入,然后对原始空间进行逆变换产生一种源编码方法,具有最佳的覆盖效率,同时仅利用每个维度的$ r $ bits。我们的算法保证了位预算$ r $的任意值的最佳性,其中包括次线性预算制度($ r <1 $),以及高预算制度($ r \ geq 1 $),虽然需要$ o \ left(n^2 \右)$乘法,其中$ n $是尺寸。我们还提出了使用Hadamard子空间对这种编码方案的有效放松扩展以显着提高梯度稀疏方案的性能。数值模拟验证我们的理论主张。我们的实现可在https://github.com/rajarshisaha95/distoptconstrocncomm上获得。
translated by 谷歌翻译
传统上依赖于时间序列推断的方法的设计统计模型,其描述了所需期望序列和观察到的序列之间的关系。已经得出了广泛的基于模型的算法,以使用表示基础分布的因子图上的递归计算来实现可控复杂性的推断。替代模型 - 不可知方法利用机器学习(ML)方法。在这里,我们提出了一个框架,它将基于模型的算法和数据驱动ML工具组合起来的静止时间序列。在所提出的方法中,开发了神经网络以分别学习描述时间序列分布的因子图的特定组件,而不是完全推理任务。通过利用该分布的静止性质,可以将所得方法应用于不同时间持续时间的序列。学习的因子图可以使用紧凑的神经网络来实现使用小型训练集的培训,或者可选地用于改进现有的深度推理系统。我们介绍了一种基于学习的静止因子图的推理算法,其学习从标记数据实现总和 - 产品方案,并且可以应用于不同长度的序列。我们的实验结果表明了所提出的学习因素图表学习从睡眠级数据集进行睡眠阶段检测的小型训练集的精确推断的能力,以及与未知通道的数字通信中的符号检测。
translated by 谷歌翻译